更负些的电压,电子就在中间电极和对阴极之间反射振荡,改善了电离。
恒星光压光帆:光帆的理论基础是,当光被反射的时候,就从光子传递给光帆一个动力产生加速度。被反射的能量越多,获得的动力就越多。也就是说,光帆表面的反射性能越好,其效果就越好。在光帆方面的发展重点,就是如何进一步寻找这样的可以很大、很薄、很轻、反光性好、而且不会因为陨石的打击而撕裂的材料。光帆最大的好处是它们有免费的推进系统,既不需要发动机,也不需要燃料,节省了大量的重量,而且可以长期加速,这两者结合,意味着它最终能达到很高的速度。但是,光帆利用恒星光的话,其缺点非常明显,首先是光帆的推重比极其微小,其次是当使用光帆的飞行器远离太阳,阳光的密集度越来越低,压力会越来越小,直到最终可以忽略,也不再对光帆施加压力并产生加速度,再次,为了能够航行并且携带一定的有效载荷,光帆的面积必须非常巨大,才能获得足够大的推力,最后,光帆飞船太缺乏机动性了,运送探测器还可以,但是运人的话,大概没几个人有这么好的耐心,如果利用激光替代恒星光的话,飞船速度上去了,但飞船同样缺乏机动性。
核脉冲发动机:不是利用受控的核反应,而是利用核爆炸来推动飞船,这已经不是一种发动机了,应该称为核脉冲火箭。这种飞船携带大量的核弹,一颗颗地抛在身后,然后引爆,飞船后面安装一个推进盘,吸收爆炸的冲击波推动飞船前进。核弹并非直接作用于推进盘上,在释放出核弹后,接着再释放出一些由高聚酯材料或者纳米纤维制成的固体圆盘。当飞船驶出一定距离,核弹将在飞船后面爆炸,蒸发掉圆盘,将其转化成高热的等离子浆。由于圆盘位于核弹和飞船之间,等离子浆中相当部分将会追上飞船,撞击飞船尾部巨大的金属推进盘,从而推动太空飞船高速行驶。推进盘承受的瞬间推力过于巨大,从而超过人体承受能力,因此,飞船设计上还在推进盘和前部船体之间安装一个振动吸收系统,脉冲能量将暂时被储存在吸收系统中,然后逐步释放出来,这样不至于因为爆炸的冲击而导致剧烈的震荡,让飞船能够比较平稳地飞行。
空间曲率航行:一种理论认为,这个宇宙的空间并不是平坦的,而是存在着曲率,如果把宇宙的整体想象为一张大膜,这张膜的表面是弧形的,整张膜甚至可能是一个封闭的肥皂泡,虽然膜的局部看似平面,但空间曲率还是无处不在。很早曾出现过许多极富野心的星际航行设想,其中之一就是空间折叠,空间折叠是设想把大范围空间的曲率无限增大,像一张纸一样对折,把“纸面”上相距遥远的两点贴在一起。这个方案严格来说不应称为空间航行,而应该叫做“空间拖曳”,因为它实质上并不是航行到目的地,而是通过改变空间曲率把目的地拖过来。这需要打破基础理论限制,对时空理论很成熟,或许还需要提供极高极高的能量,这在目前不太现实。同时,有些人提出一种相反的设想。就是如果飞船能用某种方式把它后面的一部分空间“熨平”,减小这部分空间的曲率,那么飞船就会被前方曲率较大的空间拉过去,可以实现光速或者超光速航行。
利用黑洞航行:基于我们已经创造出人工黑洞,我们是否大胆设想,利用人工黑洞进行超光速航行当然我们需要知道天然黑洞和人造黑洞的完善理论,不过我们可以试验,比如将一艘人工智能控制的飞船进入到人造黑洞,看是否有奇特现象,是否有超光速效果或许黑洞产生的强大引力场能局部改变空间结构,形成空间曲率变化,可以进行曲率航行。利用这种空间前后的张力推动,使得飞船可以安全的以快于光速的几个数量级的速度航行,用空间推动的方式规避了光速限制,同时又回避了时间膨胀的相对论性的问题。
以下是建议:目前重点投放在离子发动机研制和批量生产,并且同时进行人造黑洞相关理论研究和超光速可行性试验。
s:本章主要内容来自于网上资料,作者搜集并整理
第13章:光速定律
红移效应,又称为多普勒效应,能够对极端遥远的天体进行测距。先前人类观测显示,所有的星系都在远离我们,并且距离我们越遥远的星系远离的速度越快,这就是著名的哈勃定律,它背后的本质是宇宙的膨胀。可以通过对遥远天体光线的光谱分析检测这种“红移”效应。恒星光谱中会有一些暗线,这是光源发出的光线中,由于某些类型的元素被吸收而产生的吸收线。星系远离我们的速度越快,其波长的拉升程度越明显,在光谱中的表现便偏向红端,被称作红移。那么基于哈勃定律,可以发现,星系距离我们越远,它们光谱中表现出的红移量也会越大。目前接收到红移最大的电磁波信号显示其来自138亿光年之外。换句话说,这是目前人类能够观察到的最古老的光线,这也在一定程度上透露了宇宙本身的年龄。在过去的138亿年间,宇宙一直在持续膨胀并且膨胀的速度非常迅速。将这一因素纳入考虑之后,天文学家们的计算结果显示,那些从138亿光年外发出的光线,产生这些光线的古老天体,由于宇宙的膨胀,今天它们和我们之间的距离已经达到了大约465亿光年左右。这一数值是目前对于可观测宇宙半径的最佳估算。将这一数值乘上一倍,就能获得可观测宇宙的直径,大约是930亿光年。2016年左右,牛津大学的米汉瓦达扬和同事们,对可观测宇宙中的已知天体数据进行了分析,试图从中探寻整个宇宙的真实形态。在使用计算机算法对数据中有意义的模式进行挖掘之后,他们得到一个新的估算值。计算结果显示整个宇宙的大小大约是可观测宇宙的250倍左右。
不管可观测宇宙有多大,这些数据都是基于光速恒定为基础的,但是基于光速壁垒的存在,所以人类观测需要重新认识,需要新的理论支撑。
第二份报告,就是文明院士提出的光速定律报告。以下是主要内容。
光速四定律:
定理1:对于一个孤立系统空间域的物质,如果该系统没有和其它系统进行能量和物质交换,则该孤立系统空间域的物质光速取决于该系统空间域的能量密度成正比和物质密度成反比;
定理2:类似于地球人类热力学第二定律的“熵增原理”,光速存在“光降原理”,即在一个孤立系统空间域内,光速会随时间单调下降;
定理3:如果两个孤立系统空间域中物质的光速相同,则它们彼此也必定处于同一时间轴上;
定理4:对于一个系统三维空间域,c2kΨeΨ ,c为该系统三维空间域的物质光速,Ψe为该系统三维空间域的能量密度,Ψ为该系统三维空间域的物质密度,ΨeΨ 定义为密度波,k为该系统三维空间域与其它三维空间域的能量和物质交换程度,即交互因子,对于一个孤立系统的三维空间域,k1。
光速四定律设定,前提是大爆炸产生了我们这个宇宙。大爆炸之初,物质只能以中子、质子、电子、光子和中微子等基本粒子形态存在。随着温度降低、冷却,逐步形成原子、原子核、分子,并复合成为通常的气体。气体逐渐凝聚成星云,星云进一步形成各种各样的恒星和星系,最终形成我们如今所看到的宇宙。
宇宙在致密炽热的奇点时,具有极高极高的能量。由于能量密度极高,而物质密度极小,所以宇宙的初始膨胀是超光速进行的。宇宙爆炸之后,宇宙体系在不断地膨胀,能量密度不断下降,能量不断创造物质,物质密度不断增加,这是一个能量密度由大到小、物质密度从稀到密的演化,所以本宇宙的本征光速是随时间单调下降的。
如果将本宇宙看作是一个孤立的系统,那么光速定律1、2、3这三条成立。如果还存在其它宇宙,则光速定理4保证有效性。将一个宇宙或多个宇宙情况推演到一个或多个系统空间域即下面推论所说的光速位面空间,或者光速空间域,光速四定律同样适用。
注:宇宙光速称为本征光速,不同空间区域的光速称为空间域或空间域物质的光速,因为宇宙本征光速是随时间单调下降的,所以宇宙中所有空间域光速都是随时间单调下降的。